Search Blog

Showing posts with label planetary motion. Show all posts
Showing posts with label planetary motion. Show all posts

Monday, 11 February 2013

Thermal Time and Kepler's Second Law

In a fascinating recent paper (arXiv:1302.0724), Haggard and Rovelli (HR) discuss the relationship between the concept of thermal time, the Tolman-Ehrenfest effect and the rate of dynamical evolution of a system - i.e., the number of distinguishable (orthogonal) states a given system transitions through in each unit of time. The last of these is also the subject of the Margolus-Levitin theorem (arXiv:quant-ph/9710043v2) according to which the rate of dynamical evolution of a macroscopic system with fixed average energy (E), has an upper bound ($\nu_{\perp}$) given by:

\begin{equation}
\label{eqn:margolus-levitin}
\nu_{\perp} \leq \frac{2E}{h}
\end{equation}